
{

Tripartite Integer Partitioning Problem

PROBLEM

GITHUB

Matthew Borkowski, Nadeem Ahmad, Yousef EL-Qawasmi, Hatim Khan, Dr. Ilias Kotsireas
Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo ON

SOLUTION

PREVIOUS
ALGORITHMS

TECHNOLOGIES

RESULTS

REFERENCES

Given three large text files consisting of
millions of rows of integers and 50
columns, find a set of rows in each text file
so that they add up to a given sum λ

�� For each column of A, B, and C�
�� Create a hash table for each column with the values as

keys and empty lists as value�
�� Loop through the column and add the index of each value

to its corresponding list in the hash table�
�� Loop through the hash tables for A and C and use an

equation to find the potential value of B�
�� Check if the potential value of B is in the hash table for B. If

it is, add the tuple (index of A value, index of B value, index
of C value) to a set of potential solutions�

�� Repeat steps 1a-1d for the second and subsequent columns of
A, B, and C, but only hash the values that were found in the
intersection of the previous columns�

�� Return the set of potential solutions.

The idea behind the algorithm is to use hashing to make it efficient to
check if a value exists in a column of a file, and to use the intersection of
the previous columns to narrow down the range of values to hash in the
current column. By doing this, the algorithm avoids having to loop
through all the values in a column for every combination of A, B, and C

� Cut down the potential rows to on
average, 1% of the original siz�

� This method can be applied to
future data matching algorithms �

� Provides valid solutions to the 3 way
matching problem

Various algorithms were tried:�

� Column-driven Algorith�
� work on each column separately, in order to

break up the problem is several sub-problems,
using the fact that the equation a + b + c = �

� The mod 10 hash function approac�
� As a pre-processing step, one can apply the mod

10 hash function to every element of the input
files, i.e. retained the last digit onl�

� Hash-Threading Algorith�
� uses threading and hashing to create a 2D array

to store the first column indexes of File B,
allowing for O(1) lookup. Potential combinations
of A, B, and C are checked using threads to find
elements that equal to λ

INPUT�
� A positive integer λ(sample value: λ = 100�
� 3 text files A, B, C, with k columns and 10 million rows

each(sample value: k = 40)

OUTPUT�
� 3 rows LA, LB , LC in files A, B, C respectively, s.t.

 LA(1) + LB (1) + LC (1) = λ

 LA(k) + LB (k) + LC (k) = λ

code snippet for the algorithm to find potential paths algorithm for hashing the first column of file A

Second hashing algorithm using constraints to narrow down data

Nabizadeh, Hadi, and Derek Eager. "An Efficient Approach to Finding Triangles in Large-Scale
Graphs." Journal of Experimental Algorithmics 18 (2013): 1-16. https://
doi.org/10.1145/2498435.2498439.

Kotsireas, Ilias. “Efficient Algorithms for Matching Problems.” Cargo Lab, Wilfrid Laurier
University

Gonnet, Gaston H., and Timothy G. Griffin. "A New Three-Pivot Quicksort, with Applications
to Computing Convex Hulls in 3D." Proceedings of the 26th Annual Symposium on
Computational Geometry, ACM Press, 2010, pp. 346-353. https://people.csail.mit.edu/
virgi/6.s078/papers/real3sum.pdf.

https://doi.org/10.1145/2498435.2498439
https://doi.org/10.1145/2498435.2498439
https://people.csail.mit.edu/virgi/6.s078/papers/real3sum.pdf
https://people.csail.mit.edu/virgi/6.s078/papers/real3sum.pdf

